Manuscript ID : 00000-66722

International Journal of Research in Electronics & Communication Technology

Volume 1, Issue 1, July-September 2013, Pages 72-77, Page Count - 6

FPGA Implementation of 32 point Radix-2 Pipelined FFT

Aruna Arya ⁽¹⁾ Augusta Sophy P ⁽²⁾

⁽¹⁾ School of Electronics Engineering, Vellore Institute of Technology Chennai, Vandalur-Kelambakkam Road, Chennai, India.
⁽²⁾ School of Electronics Engineering, Vellore Institute of Technology Chennai, Vandalur-Kelambakkam Road, Chennai, India.

Abstract

This paper presents an advanced method of implementing Fast Fourier Transform(FFT) using pipelining concepts. FFT is a technique which efficiently calculates the DFT by reducing the number of addition and multiplication operations taken place. In this paper , in between the intermediate stages of every butterfly, pipelining is used to store the outputs of previous stages. Then, the development of 32-point FFT based on Decimation-In-Time radix-2 algorithm has been done. Pipelining is used to enhance the speed by decreasing the clock period and hence to improve the throughput of the FFT processor.

Author Keywords

Fast Fourier Transform, Decimation In Time, Pipelining, Radix-2, Registers

ISSN Print: 2348-0017 Source Type: Journals Publication Language: English Abbreviated Journal Title: IJRECT Publisher Name: IAEME Publication Major Subject: Physical Sciences Subject area: Electronics Engineering ISSN Online: 2347-6109 Document Type: Journal Article DOI: Access Type: Open Access Resource Licence: CC BY-NC Subject Area classification: Engineering and Technology Source: SCOPEDATABASE

References (9)

1. Asmita Haveliya

Design and simulation of 32-point FFT Using Radix-2 Algorithm for FPGA implementation

(2012) 2012 Second International Conference on Advanced Computing & Communication Technologies, Page No 167-171, DOI: https://doi.org/10.1109/ACCT.2012.43

2. Mateus Beck Fonseca, Martins J.B.S, da Costa E.A.C Design of Pipelined Butterflies from Radix-2 FFT with Decimation in Time Algorithm Using Efficient Adder Compressors

(2011) 2011 IEEE Second Latin American Symposium on Circuits and Systems, DOI: https://doi.org/10.1109/LASCAS.2011.5750281

3. Monson H Hayes Digital signal processing

Source ID : 0000089

4. Wei Han, T. Arslan, A.T. Erdogan and M. Hasan Multiplier-less based Parallel-pipelined FFT architectures for Wireless communication applications

(2005) IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005, DOI: https://doi.org/10.1109/ICASSP.2005.1416236

5. Ahmed Saeed, M,Elbably, G.Aldelfadeel, and M.I. Eladawy Efficient FPGA implementation of FFT/IFFT Processor

(2009) International Journal of Circuits, Systems and Signal Processing, Volume 3, Issue 3,

6. K. Maharatna, E. Grass, and U. Jaghold A 64-point Fourier transform Chip for High-speed wireless LAN application using OFDM

(2004) IEEE Journal of Solid- State Circuit, Volume 39, Issue 3, Page No 484-493,

7. Wei Han, A.T. Erdogan T.Arslan, and M.Hasa A Novel Low Power Pipelined FFT based on Subexpression sharing for wireless LAN applications

(2004) IEEE Signal Processing Systems Workshop, Page No 83-88,

8. M.Hasan and T. Arslan A triple Port RAM based Low Power commutator architecture for a Pipelined FFT Processor

(2003) Proceedings of the 2003 International Symposium Circuits and Systems, Volume 5, Page No 353-356,

 A. Wenzler and E. Luder New structures for Complex Multipliers and their Noise Analysis

(1995) 1995 IEEE International Symposium on Circuits and Systems, DOI: https://doi.org/10.1109/ISCAS.1995.521402

About Scope Database

What is Scope Database Content Coverage Guide Scope Database Blog Content Coverage API Scope Database App © Copyright 2022 Scope Database, All rights reserved.

Customer Service

Help Scope Database Key Persons Contact us