

Manuscript ID : 00001-36122

Source ID : 00000421

Bulletin of Pure and Applied Sciences Section-C-Chemistry

Volume 38C, Issue 2, July-December 2019, Pages 171-175, Page Count - 5

Iron Determination by Colorimetric Method Using O-Phenanthroline

Atri D. Tripathi ⁽¹⁾ K.A. Gupta ⁽²⁾ Shally Malik ⁽³⁾

⁽¹⁾ Department of Chemistry, Faculty of Engineering, Teerthanker Mahaveer University, Uttar Pradesh, India.

⁽²⁾ Department of Chemistry, Faculty of Engineering, Teerthanker Mahaveer University, Uttar Pradesh, India.

⁽³⁾ Department of Chemistry, Faculty of Engineering, Teerthanker Mahaveer University, Uttar Pradesh, India.

Abstract

Fe²⁺ reaction with 1, 10-Phenanthroline determined the quantity of soluble iron (II) in the sample to transform a weakly colored iron into an intensely colored complex which could be used in the analysis. The substance absorbed certain wavelengths when a light from the source with a certain intensity and frequency range was passed to this intensely colored complex. The intensity of a solution's color is proportional to the absorbing species concentration and the absorption is proportional to the substance concentration. A separate concentration of standards was prepared and absorbance in 511 nm, the largest wavelength, was determined using Colorimeter. Using the same standard technique and reagents, a blank and three unknown samples were also prepared. A calibration curve was built following Beer's Law. The iron concentration was verified using the equation of the calibration curve and the absorption under the same experimental conditions of three unknowns.

Author Keywords

Colorimeter, 1,10 phenanthroline, standard solutions, calibration, wavelength

Acknowledgement

Authors are extremely grateful to the Head, Dr.Varun Kumar Singh, Department of Chemistry, Faculty of Engineering for providing lab facilities during course of this investigation.

ISSN Print: 0970-4620

Source Type: Journals

Publication Language: English

Abbreviated Journal Title:

Publisher Name: BPAS Publications

Major Subject: Physical Sciences

Subject area: Analytical Chemistry

ISSN Online: 2320-320X

Document Type: Journal Article

DOI: <https://doi.org/10.5958/2320-320X.2019.00018.9>

Access Type: Open Access

Resource Licence: CC BY-NC

Subject Area classification: Chemistry

Source: SCOPEDATABASE